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Graph Spectrum

Throughout this presentation,

G = (V(G),E(G)) is a finite, undirected, and simple graph of order
|V(G)| = n and size |E(G)| = m.

A = A(G) is the adjacency matrix of the graph.

The eigenvalues of A are given in decreasing order by

λmax(G) = λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G) = λmin(G). (1.1)

The spectrum of G is a multiset that consists of all the eigenvalues of
A, including their multiplicities.
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Orthogonal Representation of Graphs

Definition 1.1

Let G be a finite, undirected and simple graph.
An orthogonal representation of G in Rd

i ∈ V(G) 7→ ui ∈ Rd

such that

uT
i uj = 0, ∀ {i, j} /∈ E(G).

An orthonormal representation of G: ∥ui∥ = 1 for all i ∈ V(G).
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Orthogonal Representation of Graphs

Definition 1.1

Let G be a finite, undirected and simple graph.
An orthogonal representation of G in Rd

i ∈ V(G) 7→ ui ∈ Rd

such that

uT
i uj = 0, ∀ {i, j} /∈ E(G).

An orthonormal representation of G: ∥ui∥ = 1 for all i ∈ V(G).

In an orthogonal representation of a graph G:

non-adjacent vertices: mapped to orthogonal vectors;

adjacent vertices: not necessarily mapped to non-orthogonal vectors.
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Lovász ϑ-function

Let G be a finite, undirected and simple graph.

The Lovász ϑ-function of G is defined as

ϑ(G) ≜ min
u,c

max
i∈V(G)

1(
cTui

)2 , (1.2)

where the minimum is taken over

all orthonormal representations {ui : i ∈ V(G)} of G, and

all unit vectors c.

The unit vector c is called the handle of the orthonormal representation.
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Lovász ϑ-function

Let G be a finite, undirected and simple graph.

The Lovász ϑ-function of G is defined as

ϑ(G) ≜ min
u,c

max
i∈V(G)

1(
cTui

)2 , (1.2)

where the minimum is taken over

all orthonormal representations {ui : i ∈ V(G)} of G, and

all unit vectors c.

The unit vector c is called the handle of the orthonormal representation.

∣∣cTui

∣∣ ≤ ∥c∥ ∥ui∥ = 1 =⇒ ϑ(G) ≥ 1,

with equality if and only if G is a complete graph.
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An Orthonormal Representation of a Pentagon

Figure 1: A 5-cycle graph and its orthonormal representation (also known as
Lovász umbrella). Calculation shows that ϑ(C5) =

√
5 (Lovász, 1979).
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Lovász ϑ-function (Cont.)

A is the n× n adjacency matrix of G (n ≜ |V(G)|);
Jn is the all-ones n× n matrix;

Sn
+ is the set of all n× n positive semidefinite matrices.

Semidefinite program (SDP), with strong duality, for computing ϑ(G):

maximize Trace(BJn)
subject to{
B ∈ Sn

+, Trace(B) = 1,

Ai,j = 1 ⇒ Bi,j = 0, i, j ∈ [n].

Computational complexity: ∃ algorithm (based on the ellipsoid method)
that numerically computes ϑ(G), for every graph G, with precision of r

decimal digits, and polynomial-time in n and r.

I. Sason, Technion, Israel ITA 2025, San Diego 6 / 33



Lovász ϑ-function (Cont.)

Let α(G), ω(G), and χ(G) denote the independence number, clique
number, and chromatic number of a graph G. Then,

(1) Sandwich theorem:
α(G) ≤ ϑ(G) ≤ χ(G), (1.3)

ω(G) ≤ ϑ(G) ≤ χ(G). (1.4)
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(2) Computational complexity:
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Let α(G), ω(G), and χ(G) denote the independence number, clique
number, and chromatic number of a graph G. Then,

(1) Sandwich theorem:
α(G) ≤ ϑ(G) ≤ χ(G), (1.3)

ω(G) ≤ ϑ(G) ≤ χ(G). (1.4)

(2) Computational complexity:

▶ α(G), ω(G), and χ(G) are NP-hard problems.
▶ However, the numerical computation of ϑ(G) is in general
feasible by convex optimization (SDP problem).

(3) Hoffman-Lovász inequality: Let G be d-regular of order n. Then,

ϑ(G) ≤ − nλn(G)

d− λn(G)
, (1.5)

with equality if G is edge-transitive.
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Strongly Regular Graphs

Let G be a d-regular graph of order n. It is a strongly regular graph (SRG)
if there exist nonnegative integers λ and µ such that

Every pair of adjacent vertices have exactly λ common neighbors;

Every pair of distinct and non-adjacent vertices have exactly µ
common neighbors.

Such a strongly regular graph is denoted by srg(n, d, λ, µ).
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Theorem 1.2 (Bounds on Lovász function of Regular Graphs, I.S., ’23)

Let G be a d-regular graph of order n, which is a non-complete and
non-empty graph. Then, the following bounds hold for the Lovász
ϑ-function of G and its complement G:

1)

n− d+ λ2(G)

1 + λ2(G)
≤ ϑ(G) ≤ − nλn(G)

d− λn(G)
. (1.6)

Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.
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Cont. of Theorem 1.2

2)

1− d

λn(G)
≤ ϑ(G) ≤

n
(
1 + λ2(G)

)
n− d+ λ2(G)

. (1.7)

Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.
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Cont. of Theorem 1.2

2)

1− d

λn(G)
≤ ϑ(G) ≤

n
(
1 + λ2(G)

)
n− d+ λ2(G)

. (1.7)

Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.

A Common Sufficient Condition

All inequalities hold with equality if G is strongly regular. (Recall that the
graph G is strongly regular if and only if G is so).
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Lovász Function of Strongly Regular Graphs (I.S., ’23)

Let G be a strongly regular graph with parameters srg(n, d, λ, µ). Then,

ϑ(G) =
n (t+ µ− λ)

2d+ t+ µ− λ
, (1.8)

ϑ(G) = 1 +
2d

t+ µ− λ
, (1.9)

where

t ≜
√

(µ− λ)2 + 4(d− µ). (1.10)
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Lovász Function of Strongly Regular Graphs (I.S., ’23)

Let G be a strongly regular graph with parameters srg(n, d, λ, µ). Then,

ϑ(G) =
n (t+ µ− λ)

2d+ t+ µ− λ
, (1.8)

ϑ(G) = 1 +
2d

t+ µ− λ
, (1.9)

where

t ≜
√

(µ− λ)2 + 4(d− µ). (1.10)

New Relation for Strongly Regular Graphs

ϑ(G)ϑ(G) = n, (1.11)

holding not only for all vertex-transitive graphs (Lovász ’79), but also for
all strongly regular graphs (that are not necessarily vertex-transitive).
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We next provide an original proof of the following celebrated theorem by
Erdös, Rényi and Sós (1966), based on our expression for the Lovász
ϑ-function of strongly regular graphs (and their complements, which are
also strongly regular graphs).

Theorem 1.3 (Friendship Theorem)

Let G be a finite graph in which any two distinct vertices have a single
common neighbor. Then, G has a vertex that is adjacent to every other
vertex.
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We next provide an original proof of the following celebrated theorem by
Erdös, Rényi and Sós (1966), based on our expression for the Lovász
ϑ-function of strongly regular graphs (and their complements, which are
also strongly regular graphs).

Theorem 1.3 (Friendship Theorem)

Let G be a finite graph in which any two distinct vertices have a single
common neighbor. Then, G has a vertex that is adjacent to every other
vertex.

A Human Interpretation of Theorem 1.3

There is a party with n people, where every two people have precisely
one common friend in that party.

Theorem 1.3 asserts that one of these people is everybody’s friend.

Indeed, construct a graph whose vertices represent the n people, and
every two vertices are adjacent if and only if they represent two
friends. The claim then follows from Theorem 1.3.
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Remark 1 (On the Friendship Theorem - Theorem 1.3)

The windmill graph (see Figure 2) has the desired property, and it
turns out to be the only one graph with that property.

Remarkably, the friendship theorem does not hold for infinite graphs.
Indeed, for an inductive construction of a counterexample, one may
start with a 5-cycle C5, and repeatedly add a common neighbor for
every pair of vertices that does not yet have one. This process results
in a countably infinite friendship graph without a vertex adjacent to
all other vertices.

Figure 2: Windmill graph.
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Alternative Proof of Theorem 1.3 (Cont.)

Suppose the assertion is false, and G is a counterexample. In other words,
there exists one vertex in G that is not adjacent to all other vertices.
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Alternative Proof of Theorem 1.3 (Cont.)

Suppose the assertion is false, and G is a counterexample. In other words,
there exists one vertex in G that is not adjacent to all other vertices. A
contradiction is obtained as follows:
The first step shows that the graph G is regular, as proved by Aigner and
Ziegler, Proofs from THE BOOK, 6th Edition, Chapter 44. We provide a
variation of that proof, and then the rest of our proof proceeds differently
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The first step shows that the graph G is regular, as proved by Aigner and
Ziegler, Proofs from THE BOOK, 6th Edition, Chapter 44. We provide a
variation of that proof, and then the rest of our proof proceeds differently
To assert the regularity of G, it is first proved that nonadjacent vertices in
G have equal degrees, i.e., d(u) = d(v) if {u, v} ̸∈ E(G).

The given hypothesis yields that G is a connected graph.
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Let {u, v} ̸∈ E(G), and let N (u) and N (v) denote, respectively, the
sets of neighbors of the nonadjacent vertices u and v.
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Suppose the assertion is false, and G is a counterexample. In other words,
there exists one vertex in G that is not adjacent to all other vertices. A
contradiction is obtained as follows:
The first step shows that the graph G is regular, as proved by Aigner and
Ziegler, Proofs from THE BOOK, 6th Edition, Chapter 44. We provide a
variation of that proof, and then the rest of our proof proceeds differently
To assert the regularity of G, it is first proved that nonadjacent vertices in
G have equal degrees, i.e., d(u) = d(v) if {u, v} ̸∈ E(G).

The given hypothesis yields that G is a connected graph.

Let {u, v} ̸∈ E(G), and let N (u) and N (v) denote, respectively, the
sets of neighbors of the nonadjacent vertices u and v.

Let f : N (u) → N (v) be the injective function where every x ∈ N (u)
is mapped to the unique y ∈ N (x)∩N (v). Indeed, if z ∈ N (u) \ {x}
satisfies f(z) = y, then x and z share two common neighbors
(namely, y and u), which contradicts the assumption of the theorem.
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Alternative Proof of Theorem 1.3 (Cont.)

Since f : N (u) → N (v) is injective, it follows that |N (u)| ≤ |N (v)|.
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Alternative Proof of Theorem 1.3 (Cont.)

Since f : N (u) → N (v) is injective, it follows that |N (u)| ≤ |N (v)|.
By symmetry, swapping u and v (as nonadjacent vertices) also yields
|N (v)| ≤ |N (v)|, so d(u) = |N (u)| = |N (v)| = d(v) for all vertices
u, v ∈ V(G) such that {u, v} ̸∈ E(G).
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|N (v)| ≤ |N (v)|, so d(u) = |N (u)| = |N (v)| = d(v) for all vertices
u, v ∈ V(G) such that {u, v} ̸∈ E(G).

To complete the proof that G is regular, let u and v be nonadjacent
vertices in G. By assumption, except of one vertex, all vertices are
either nonadjacent to u or v. Hence, except of that vertex, all these
vertices must have identical degrees by what we already proved.
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vertices in G. By assumption, except of one vertex, all vertices are
either nonadjacent to u or v. Hence, except of that vertex, all these
vertices must have identical degrees by what we already proved.

Finally, by our further assumption (later leading to a contradiction),
since there is no vertex in G that is adjacent to all other vertices, also
the single vertex that is adjacent to u and v has a nonneighbor in G,
so it also should have an identical degree to all the degrees of the
other vertices by what is proved above.
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Since f : N (u) → N (v) is injective, it follows that |N (u)| ≤ |N (v)|.
By symmetry, swapping u and v (as nonadjacent vertices) also yields
|N (v)| ≤ |N (v)|, so d(u) = |N (u)| = |N (v)| = d(v) for all vertices
u, v ∈ V(G) such that {u, v} ̸∈ E(G).

To complete the proof that G is regular, let u and v be nonadjacent
vertices in G. By assumption, except of one vertex, all vertices are
either nonadjacent to u or v. Hence, except of that vertex, all these
vertices must have identical degrees by what we already proved.

Finally, by our further assumption (later leading to a contradiction),
since there is no vertex in G that is adjacent to all other vertices, also
the single vertex that is adjacent to u and v has a nonneighbor in G,
so it also should have an identical degree to all the degrees of the
other vertices by what is proved above.

Consequently, G is a regular graph.
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Alternative Proof of Theorem 1.3 (Cont.)

From that point, our proof proceeds differently.
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Alternative Proof of Theorem 1.3 (Cont.)

From that point, our proof proceeds differently.

Let G be a k-regular graph on n vertices. By assumption, every two
vertices have exactly one common neighbor, so G is srg(n, k, 1, 1).
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Alternative Proof of Theorem 1.3 (Cont.)

From that point, our proof proceeds differently.

Let G be a k-regular graph on n vertices. By assumption, every two
vertices have exactly one common neighbor, so G is srg(n, k, 1, 1).

First, if k = 1 or k = 2, then by assumption, it follows that G = K1 or
G = K2, respectively, leading to a contradiction. Hence, let k ≥ 3.
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First, if k = 1 or k = 2, then by assumption, it follows that G = K1 or
G = K2, respectively, leading to a contradiction. Hence, let k ≥ 3.

Every two adjacent vertices in G share a common neighbor, so G
contains a triangle. Moreover, G is C4-free since every two vertices
have exactly one common neighbor, so it is K4-free. Hence, ω(G) = 3.
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From that point, our proof proceeds differently.

Let G be a k-regular graph on n vertices. By assumption, every two
vertices have exactly one common neighbor, so G is srg(n, k, 1, 1).

First, if k = 1 or k = 2, then by assumption, it follows that G = K1 or
G = K2, respectively, leading to a contradiction. Hence, let k ≥ 3.

Every two adjacent vertices in G share a common neighbor, so G
contains a triangle. Moreover, G is C4-free since every two vertices
have exactly one common neighbor, so it is K4-free. Hence, ω(G) = 3.

We next show that χ(G) = 3. First, χ(G) ≥ ω(G) = 3. We also need
to show that χ(G) ≤ 3, which means that three colors suffice to color
the vertices of G in a way that no two adjacent vertices are assigned
the same color. This can be done recursively by noticing that every
edge belongs to exactly one triangle, and a newly colored vertex
always complete a properly colored triangle, ensuring that at each
step, the coloring remains valid without requiring a fourth color.
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Alternative Proof of Theorem 1.3 (Cont.)

By the sandwich theorem ω(G) ≤ ϑ(G) ≤ χ(G), so ϑ(G) = 3.
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Alternative Proof of Theorem 1.3 (Cont.)

By the sandwich theorem ω(G) ≤ ϑ(G) ≤ χ(G), so ϑ(G) = 3.

By the expression for ϑ(G) where G is srg(n, k, 1, 1), it follows that

ϑ(G) = 1 +
k√
k − 1

.
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By the expression for ϑ(G) where G is srg(n, k, 1, 1), it follows that

ϑ(G) = 1 +
k√
k − 1

.

This leads to a contradiction since, for all k ≥ 3,

(k − 2)2 > 0,

⇔ k2 > 4(k − 1),

⇔ 1 +
k√
k − 1

> 3.
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By the sandwich theorem ω(G) ≤ ϑ(G) ≤ χ(G), so ϑ(G) = 3.

By the expression for ϑ(G) where G is srg(n, k, 1, 1), it follows that

ϑ(G) = 1 +
k√
k − 1

.

This leads to a contradiction since, for all k ≥ 3,

(k − 2)2 > 0,

⇔ k2 > 4(k − 1),

⇔ 1 +
k√
k − 1

> 3.

This completes the proof of the friendship theorem (Theorem 1.3).

I. Sason, “On strongly regular graphs and the friendship theorem,”
submitted, February 2025. https://arxiv.org/abs/2502.13596
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A Second Alternative Proof of Theorem 1.3

From the point where we get, by contradiction, that G is srg(n, k, 1, 1), it
is possible to get a contradiction in the following alternative way.

Proposition 1.1 (Feasible Parameters of Strongly Regular Graphs)

Let G be a strongly regular graph with parameters srg(n, d, λ, µ). Then,

1 (n− d− 1)µ = d (d− λ− 1).

2
2d+(n−1)(λ−µ)√
(λ−µ)2+4(d−µ)

is an integer whose absolute value is less than n− 1.

3 6|(ndλ).
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A Second Alternative Proof of Theorem 1.3

From the point where we get, by contradiction, that G is srg(n, k, 1, 1), it
is possible to get a contradiction in the following alternative way.

Proposition 1.1 (Feasible Parameters of Strongly Regular Graphs)

Let G be a strongly regular graph with parameters srg(n, d, λ, µ). Then,

1 (n− d− 1)µ = d (d− λ− 1).

2
2d+(n−1)(λ−µ)√
(λ−µ)2+4(d−µ)

is an integer whose absolute value is less than n− 1.

3 6|(ndλ).

Proof

Condition 1 is a combinatorial equality for strongly regular graphs.

Condition 2 holds by the integrality of the multiplicities of the
second-largest and least eigenvalues of the adjacency matrix.

Condition 3 holds by the number of triangles in the graph G.
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A Second Alternative Proof of Theorem 1.3 (Cont.)

By Item 1 in Proposition 1.1 with d = k and λ = µ = 1, we get
n = k2 − k + 1. This does not lead to a contradiction since summing
over all the degrees of the neighbors of an arbitrary vertex u gives k2.
Then, by the assumption of the theorem that every two vertices have
exactly one common neighbor, it follows that the above summation
counts every vertex in G exactly one time, except of u that is counted
k times. Hence, indeed n = k2 − k + 1.
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A Second Alternative Proof of Theorem 1.3 (Cont.)

By Item 1 in Proposition 1.1 with d = k and λ = µ = 1, we get
n = k2 − k + 1. This does not lead to a contradiction since summing
over all the degrees of the neighbors of an arbitrary vertex u gives k2.
Then, by the assumption of the theorem that every two vertices have
exactly one common neighbor, it follows that the above summation
counts every vertex in G exactly one time, except of u that is counted
k times. Hence, indeed n = k2 − k + 1.

By Item 2 in Proposition 1.1 with d = k and λ = µ = 1, we get that
k√
k−1

∈ N. Consequently, (k − 1)|k2 ∈ N. Since
k2 = (k − 1)(k + 1) + 1, it follows that (k − 1)|1, so k = 2. If k = 2,
the only graph that satisfies the condition of Theorem 1.3 is G = K2,
which also satisfies the assertion of the theorem. Hence, this
argument contradicts the assumption in the proof since it led to the
conclusion that G is srg(n, k, 1, 1).
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The sandwich theorem for the Lovász ϑ-function applied to strongly
regular graphs gives the following result.

Corollary 1.4 (Bounds on Parameters of SRGs)

Let G be a strongly regular graph with parameters srg(n, d, λ, µ). Then,

α(G) ≤
⌊

n (t+ µ− λ)

2d+ t+ µ− λ

⌋
(1.12)

ω(G) ≤ 1 +

⌊
2d

t+ µ− λ

⌋
, (1.13)

χ(G) ≥ 1 +

⌈
2d

t+ µ− λ

⌉
, (1.14)

χ(G) ≥
⌈

n (t+ µ− λ)

2d+ t+ µ− λ

⌉
, (1.15)

with
t ≜

√
(µ− λ)2 + 4(d− µ). (1.16)
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Examples: Bounds on Parameters of SRGs

Figure 3: The Petersen graph is srg(10, 3, 0, 1) (left), and the Shrikhande graph is
srg(16, 6, 2, 2) (right). Their chromatic numbers are 3 and 4, respectively.
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Schläfli Graph

Figure 4: Schläfli graph is srg(27, 16, 10, 8) with chromatic number χ(G) = 9.
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Examples: Bounds on Parameters of SRGs (Cont.)

1 Let G1 be the Petersen graph. Then, the bounds on the
independence, clique, and chromatic numbers of G are tight:

α(G1) = 4, ω(G1) = 2, χ(G1) = 3. (1.17)

2 The bounds on the chromatic numbers of the Schläfli graph (G2),
Shrikhande graph (G3) and Hall-Janko graph (G4) are tight:

χ(G2) = 9, χ(G3) = 4, χ(G4) = 10. (1.18)

3 For the Shrikhande graph (G3),

▶ the bound on its independence number is also tight: α(G3) = 4,
▶ its upper bound on its clique number is, however, not tight (it is
equal to 4, and ω(G3) = 3).
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Strong Product of Graphs

Let G and H be two graphs. The strong product G⊠ H is a graph with

vertex set: V(G⊠ H) = V(G)× V(H),

two distinct vertices (g, h) and (g′, h′) in G⊠ H are adjacent if the
following two conditions hold:
(1) g = g′ or {g, g′} ∈ E(G),

(2) h = h′ or {h, h′} ∈ E(H).

Strong products are commutative and associative.
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Strong Product of Graphs

Let G and H be two graphs. The strong product G⊠ H is a graph with

vertex set: V(G⊠ H) = V(G)× V(H),

two distinct vertices (g, h) and (g′, h′) in G⊠ H are adjacent if the
following two conditions hold:
(1) g = g′ or {g, g′} ∈ E(G),

(2) h = h′ or {h, h′} ∈ E(H).

Strong products are commutative and associative.

Strong Powers of Graphs

Let

G⊠ k ≜ G⊠ . . .⊠ G︸ ︷︷ ︸
G appears k times

, k ∈ N (1.19)

denote the k-fold strong power of a graph G.
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Shannon Capacity of a Graph (1956)

The capacity of a graph G was introduced by Claude E. Shannon
(1956) to represent the maximum information rate that can be
obtained with zero-error communication.
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Shannon Capacity of a Graph (1956)

The capacity of a graph G was introduced by Claude E. Shannon
(1956) to represent the maximum information rate that can be
obtained with zero-error communication.

A channel is represented by a confusion graph G, where the vertices
of G represent the input symbols and two vertices are adjacent if the
corresponding pair of input symbols can be confused by the channel
decoder). The Shannon capacity of a graph G is given by

Θ(G) = sup
k∈N

k

√
α(G⊠ k)

= lim
k→∞

k

√
α(G⊠ k). (2.1)
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The capacity of a graph G was introduced by Claude E. Shannon
(1956) to represent the maximum information rate that can be
obtained with zero-error communication.

A channel is represented by a confusion graph G, where the vertices
of G represent the input symbols and two vertices are adjacent if the
corresponding pair of input symbols can be confused by the channel
decoder). The Shannon capacity of a graph G is given by

Θ(G) = sup
k∈N

k

√
α(G⊠ k)

= lim
k→∞

k

√
α(G⊠ k). (2.1)

The last equality holds by Fekete’s Lemma since the sequence
{logα(G⊠ k)}∞k=1 is super-additive, i.e.,

α(G⊠ (k1+k2)) ≥ α(G⊠ k1) α(G⊠ k2). (2.2)
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On the Computability of the Shannon Capacity of Graphs

The Shannon capacity of a graph can be rarely computed exactly. §

However, the Lovász ϑ-function of a graph is a computable (and
sometimes tight) upper bound on the Shannon capacity. ©

Lovász Bound on the Shannon Capacity of Graphs (1979)

Theorem: For every finite, simple and undirected graph G,

Θ(G) ≤ ϑ(G). (2.3)
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Capacity of Graphs

Proposition: Let G be a finite, undirected, and simple graph. If
α(G⊠ℓ) = ϑ(G)ℓ for some ℓ ∈ N, then

Θ(G) = ϑ(G), ∀ k ∈ N. (2.4)
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Capacity of Graphs

Proposition: Let G be a finite, undirected, and simple graph. If
α(G⊠ℓ) = ϑ(G)ℓ for some ℓ ∈ N, then

Θ(G) = ϑ(G), ∀ k ∈ N. (2.4)

Corollary 1: If α(G) = ϑ(G), then for all k ∈ N, the k-fold strong power of
G satisfies

α(G)k = α(G⊠k) = Θ(G⊠k) = ϑ(G⊠k) = ϑ(G)k, ∀ k ∈ N. (2.5)
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Capacity of Graphs

Proposition: Let G be a finite, undirected, and simple graph. If
α(G⊠ℓ) = ϑ(G)ℓ for some ℓ ∈ N, then

Θ(G) = ϑ(G), ∀ k ∈ N. (2.4)

Corollary 1: If α(G) = ϑ(G), then for all k ∈ N, the k-fold strong power of
G satisfies

α(G)k = α(G⊠k) = Θ(G⊠k) = ϑ(G⊠k) = ϑ(G)k, ∀ k ∈ N. (2.5)

By Corollary 1 and our closed expression for the Lovász ϑ-function of
strongly regular graphs, the Shannon capacity of some strongly regular
graphs can be determined.
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Shannon Capacities of Some Strongly Regular Graphs

(1) The Hall-Janko graph G is srg(100, 36, 14, 12), and Θ(G) = 10.

(2) The Hoffman-Singleton graph G is srg(50, 7, 0, 1), and Θ(G) = 15.

(3) The Janko-Kharaghani graphs of orders 936 and 1800 are
srg(936, 375, 150, 150) and srg(1800, 1029, 588, 588), respectively.
The capacity of both graphs is 36.

(4) Janko-Kharaghani-Tonchev: G = srg(324, 153, 72, 72),Θ(G) = 18.

(5) The graphs introduced by Makhnev are G = srg(64, 18, 2, 6) and
G = srg(64, 45, 32, 30). Capacities: Θ(G) = 16, and Θ(G) = 4.

(6) The Mathon-Rosa graph G is srg(280, 117, 44, 52), and Θ(G) = 28.

(7) The Schläfli graph G is srg(27, 16, 10, 8), and Θ(G) = 3.

(8) The Shrikhande graph is srg(16, 6, 2, 2); its capacity is Θ(G) = 4.

(9) The Sims-Gewirtz graph G is srg(56, 10, 0, 2), and Θ(G) = 16.

(10) The graph G by Tonchev is srg(220, 84, 38, 28), and Θ(G) = 10.
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In some cases, the Shannon capacity of a graph can be calculated exactly,
and the Lovász ϑ-function is a tight bound. ©

Theorem 2.1 (Self-complementary vertex-transitive graphs, Lovász 79)

Let G be an undirected and simple graph on n vertices.

(1) If G is a vertex-transitive graph on n vertices, then

α(G⊠ G) = Θ(G⊠ G) = ϑ(G⊠ G) = n. (2.6)

(2) If G is a self-complementary and vertex-transitive graph on n vertices,
then

Θ(G) =
√
n = ϑ(G). (2.7)
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Theorem 2.2 (Strengthened and Refined Ver. of Thm. 2.1 (I.S., ’24))

Let G be an undirected and simple graph on n vertices.

1 If G is a vertex-transitive or strongly regular graph, then

α(G⊠ G) = Θ(G⊠ G) = ϑ(G⊠ G) = n. (2.8)

2 If G is a conference graph, then ϑ(G) =
√
n.

3 If G is a self-complementary graph with α(G) = k, then
√
n ≤ Θ(G) ≤ 16n

k−1
k+1 . (2.9)

4 If G is a self-complementary graph that is vertex-transitive or strongly
regular, then

Θ(G) =
√
n = ϑ(G), (2.10)√

α(G⊠ G) = Θ(G). (2.11)

Hence, the minimum Shannon capacity among all self-complementary
graphs of a fixed order n is achieved by those that are vertex-transitive or
strongly regular, and this minimum is equal to

√
n.
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Summary (I.S., ’23)

Upper and lower bounds on the Lovász-ϑ function of regular graphs.

These spectral bound depend on the second-largest and smallest
eigenvalues of the adjacency matrix.

The upper bound is due to Lovász, followed by a new sufficient
condition for its tightness, and the lower bound is new.

These bounds are tight ⇐⇒ the graph is strongly regular (SRG).

Useful in bounding graph invariants, including the Shannon capacity.
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Summary (I.S., ’24)

Our follow-up published work (AIMS-Mathematics, 2024) delves into three
research directions, leveraging the Lovász ϑ-function of graphs.

It provides new results on the Shannon capacity of graphs, including
the determination of that capacity for two infinite subclasses of SRGs.

For every even integer n ≥ 14, it is constructively proven that there
exist connected, irregular, cospectral, and nonisomorphic graphs on n
vertices such that the following holds:

▶ Cospectrality with respect to the adjacency, Laplacian, signless
Laplacian, and normalized Laplacian matrices,

▶ They share identical independence, clique, and chromatic numbers,
▶ Their Lovász ϑ-functions are distinct.

A query regarding the variant of the ϑ-function by Schrijver and the
identical function by McEliece et al. (1978) is resolved.

It is shown, by a counterexample, that the ϑ-function variant by
Schrijver does not possess the property of the Lovász ϑ-function of
forming an upper bound on the Shannon capacity of a graph.
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Recent Journal Papers

This talk presents in part the following recent journal papers:

1 I. Sason, “Observations on the Lovász ϑ-function, graph capacity,
eigenvalues, and strong products,” Entropy, vol. 25, no. 1, paper 104,
pp. 1–40, January 2023. https://doi.org/10.3390/e25010104

2 I. Sason, “Observations on graph invariants with the Lovász
ϑ-function,” AIMS Mathematics, vol. 9, pp. 15385–15468, April 2024.
https://www.aimspress.com/article/doi/10.3934/math.2024747

3 I. Sason, “On strongly regular graphs and the friendship theorem,”
submitted, February 2025. https://arxiv.org/abs/2502.13596
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