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Graph Spectrum

Throughout this presentation,
e G = (V(G),E(G)) is a finite, undirected, and simple graph of order
|V(G)| = n and size | E(G)| = m.
e A = A(G) is the adjacency matrix of the graph.

@ The eigenvalues of A are given in decreasing order by
Amax(G) = A1(G) > X2(G) > ... > A\ (G) = Amin(G). (1.1)

@ The spectrum of G is a multiset that consists of all the eigenvalues of
A, including their multiplicities.
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Orthogonal Representation of Graphs

Definition 1.1

Let G be a finite, undirected and simple graph.
An orthogonal representation of G in R?

i€ V(G) — u; € R?
such that
ulu; =0, V{i,j}¢E(G).

An orthonormal representation of G: ||u;|| = 1 for all i € V(G).

L
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Orthogonal Representation of Graphs

Definition 1.1

Let G be a finite, undirected and simple graph.
An orthogonal representation of G in R?

i € V(G) — u; € R?
such that
ulu; =0, V{i,j}¢E(G).

An orthonormal representation of G: ||u;|| = 1 for all i € V(G).

L

In an orthogonal representation of a graph G:
@ non-adjacent vertices: mapped to orthogonal vectors;

@ adjacent vertices: not necessarily mapped to non-orthogonal vectors.
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Lovasz J-function

Let G be a finite, undirected and simple graph.
The Lovasz Y-function of G is defined as
1
9(G) £ min max ——, (1.2)
u,c cV(G) (cTui)
where the minimum is taken over
o all orthonormal representations {u; : i € V(G)} of G, and

@ all unit vectors c.

The unit vector c is called the handle of the orthonormal representation.
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Lovasz J-function

Let G be a finite, undirected and simple graph.
The Lovasz J-function of G is defined as

9(G) £ min max ;2, (1.2)
u,c cV(G) (cTui)

where the minimum is taken over
o all orthonormal representations {u; : i € V(G)} of G, and

@ all unit vectors c.

The unit vector c is called the handle of the orthonormal representation.

u| < llell lu = 1 = 9(G) > 1,

with equality if and only if G is a complete graph.
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An Orthonormal Representation of a Pentagon

w ¢

Figure 1: A 5-cycle graph and its orthonormal representation (also known as
Lovész umbrella). Calculation shows that 9(Cs) = /5 (Lovasz, 1979).
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Lovész ¥-function (Cont.)

@ A is the n x n adjacency matrix of G (n = |V(G)|);
@ J, is the all-ones n x n matrix;
@ S is the set of all n x n positive semidefinite matrices.

Semidefinite program (SDP), with strong duality, for computing 9(G):

maximize Trace(BJ,,)
subject to

B e S}, Trace(B) =1,
Ai,j =1 = Bi,j =0, 1,7€ [n]

Computational complexity: 3 algorithm (based on the ellipsoid method)
that numerically computes 9(G), for every graph G, with precision of r
decimal digits, and polynomial-time in n and r.
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Lovész ¥-function (Cont.)

Let «(G), w(G), and x(G) denote the independence number, clique
number, and chromatic number of a graph G. Then,

ich th ; G
@ Sandwich theorem a(G) < 9(G) < x(G),

w(G) < 9(G) < X(G).

(1.3)
(1.4)

v
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Lovész ¥-function (Cont.)

Let «(G), w(G), and x(G) denote the independence number, clique
number, and chromatic number of a graph G. Then,

@ Sandwich theorem:

@ Computational complexity:
» a(G), w(G), and x(G) are NP-hard problems.
» However, the numerical computation of ¥(G) is in general
feasible by convex optimization (SDP problem).

(1.3)
(1.4)
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Lovész ¥-function (Cont.)

Let «(G), w(G), and x(G) denote the independence number, clique
number, and chromatic number of a graph G. Then,

@ Sandwich theorem: o(G) < 9(G) < x(G), (1.3)

X
w(G) < 9(G) < x(G). (1.4)

@ Computational complexity:
» a(G), w(G), and x(G) are NP-hard problems.
» However, the numerical computation of ¥(G) is in general
feasible by convex optimization (SDP problem).

@ Hoffman-Lovasz inequality: Let G be d-regular of order n. Then,

n A (G)
H(G) < ESWE)

with equality if G is edge-transitive.

(1.5)
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Strongly Regular Graphs

Let G be a d-regular graph of order n. It is a strongly regular graph (SRG)
if there exist nonnegative integers A and p such that

@ Every pair of adjacent vertices have exactly A\ common neighbors;

@ Every pair of distinct and non-adjacent vertices have exactly p
common neighbors.

Such a strongly regular graph is denoted by srg(n,d, \, u).
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Theorem 1.2 (Bounds on Lovész function of Regular Graphs, |.S., '23)

Let G be a d-regular graph of order n, which is a non-complete and
non-empty graph. Then, the following bounds hold for the Lovasz
¥-function of G and its complement G:

1)

n—d+ X2(G) nA\,(G)

— 2 <Y(G) < —— . 1.
1+ X(G) — (6) = d— M (G) (1.6)

o Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

@ Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.
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Cont. of Theorem 1.2

2)

(1.7)

@ Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

e Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.
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Cont. of Theorem 1.2

2)

(1.7)

@ Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

e Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.

A Common Sufficient Condition

All inequalities hold with equality if G is strongly regular. (Recall that the
graph G is strongly regular if and only if G is so).
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Lovész Function of Strongly Regular Graphs (1.S., '23)

Let G be a strongly regular graph with parameters srg(n,d, \, ). Then,
n(t+p—2A)
NG) = —F———— 1.8
(©) 2d +t+pu— N (1.8)
— 2d
HG) =14 — 1.9
@ =1+ (19)
where
t2 /(-2 +4(d—p). (1.10)
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Lovédsz Function of Strongly Regular Graphs (1.S., '23)

Let G be a strongly regular graph with parameters srg(n,d, \, ). Then,
n(t+p—2A)
NG) = —F———— 1.8
(©) 2d +t+pu— N (1.8)
— 2d
HG) =14 — 1.9
@ =1+ (19)
where
t2 /lu— AP+ ald—p). (1.10)
New Relation for Strongly Regular Graphs
9(G)V(G) = n, (1.11)
holding not only for all vertex-transitive graphs (Lovasz '79), but also for
all strongly regular graphs (that are not necessarily vertex-transitive).
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We next provide an original proof of the following celebrated theorem by
Erdds, Rényi and Sés (1966), based on our expression for the Lovasz
U-function of strongly regular graphs (and their complements, which are
also strongly regular graphs).

Theorem 1.3 (Friendship Theorem)

Let G be a finite graph in which any two distinct vertices have a single
common neighbor. Then, G has a vertex that is adjacent to every other
vertex.
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We next provide an original proof of the following celebrated theorem by
Erdds, Rényi and Sés (1966), based on our expression for the Lovasz
U-function of strongly regular graphs (and their complements, which are
also strongly regular graphs).

Theorem 1.3 (Friendship Theorem)

Let G be a finite graph in which any two distinct vertices have a single
common neighbor. Then, G has a vertex that is adjacent to every other
vertex.

A Human Interpretation of Theorem 1.3

@ There is a party with n people, where every two people have precisely
one common friend in that party.

@ Theorem 1.3 asserts that one of these people is everybody’s friend.

@ Indeed, construct a graph whose vertices represent the n people, and
every two vertices are adjacent if and only if they represent two
friends. The claim then follows from Theorem 1.3.

= = = = =
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Remark 1 (On the Friendship Theorem - Theorem 1.3)

@ The windmill graph (see Figure 2) has the desired property, and it
turns out to be the only one graph with that property.

@ Remarkably, the friendship theorem does not hold for infinite graphs.
Indeed, for an inductive construction of a counterexample, one may
start with a 5-cycle Cs, and repeatedly add a common neighbor for
every pair of vertices that does not yet have one. This process results
in a countably infinite friendship graph without a vertex adjacent to
all other vertices.

Figure 2: Windmill graph.

|. Sason, Technion, Israel ITA 2025, San Diego 13/33



Alternative Proof of Theorem 1.3 (Cont.)

Suppose the assertion is false, and G is a counterexample. In other words,
there exists one vertex in G that is not adjacent to all other vertices.
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Alternative Proof of Theorem 1.3 (Cont.)

Suppose the assertion is false, and G is a counterexample. In other words,
there exists one vertex in G that is not adjacent to all other vertices. A
contradiction is obtained as follows:

The first step shows that the graph G is regular, as proved by Aigner and
Ziegler, Proofs from THE BOOK, 6th Edition, Chapter 44. \We provide a
variation of that proof, and then the rest of our proof proceeds differently

|. Sason, Technion, Israel ITA 2025, San Diego 14 /33



Alternative Proof of Theorem 1.3 (Cont.)

Suppose the assertion is false, and G is a counterexample. In other words,
there exists one vertex in G that is not adjacent to all other vertices. A
contradiction is obtained as follows:

The first step shows that the graph G is regular, as proved by Aigner and
Ziegler, Proofs from THE BOOK, 6th Edition, Chapter 44. \We provide a
variation of that proof, and then the rest of our proof proceeds differently
To assert the regularity of G, it is first proved that nonadjacent vertices in
G have equal degrees, i.e., d(u) = d(v) if {u,v} € E(G).

@ The given hypothesis yields that G is a connected graph.
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Alternative Proof of Theorem 1.3 (Cont.)

Suppose the assertion is false, and G is a counterexample. In other words,
there exists one vertex in G that is not adjacent to all other vertices. A
contradiction is obtained as follows:
The first step shows that the graph G is regular, as proved by Aigner and
Ziegler, Proofs from THE BOOK, 6th Edition, Chapter 44. \We provide a
variation of that proof, and then the rest of our proof proceeds differently
To assert the regularity of G, it is first proved that nonadjacent vertices in
G have equal degrees, i.e., d(u) = d(v) if {u,v} € E(G).

@ The given hypothesis yields that G is a connected graph.

o Let {u,v} € E(G), and let N'(u) and N (v) denote, respectively, the
sets of neighbors of the nonadjacent vertices u and v.
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Alternative Proof of Theorem 1.3 (Cont.)

Suppose the assertion is false, and G is a counterexample. In other words,
there exists one vertex in G that is not adjacent to all other vertices. A
contradiction is obtained as follows:
The first step shows that the graph G is regular, as proved by Aigner and
Ziegler, Proofs from THE BOOK, 6th Edition, Chapter 44. \We provide a
variation of that proof, and then the rest of our proof proceeds differently
To assert the regularity of G, it is first proved that nonadjacent vertices in
G have equal degrees, i.e., d(u) = d(v) if {u,v} € E(G).
@ The given hypothesis yields that G is a connected graph.
o Let {u,v} € E(G), and let N'(u) and N (v) denote, respectively, the
sets of neighbors of the nonadjacent vertices u and v.
o Let f: NM(u) — N(v) be the injective function where every x € N (u)
is mapped to the unique y € N (z) "N (v). Indeed, if 2 € N'(u) \ {z}
satisfies f(z) =y, then = and z share two common neighbors
(namely, y and u), which contradicts the assumption of the theorem.
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Alternative Proof of Theorem 1.3 (Cont.)

@ Since f: N(u) — N (v) is injective, it follows that [N (u)| < [N (v)].
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Alternative Proof of Theorem 1.3 (Cont.)

@ Since f: N(u) — N (v) is injective, it follows that [N (u)| < [N (v)].

@ By symmetry, swapping v and v (as nonadjacent vertices) also yields
NV (v)| < |N(v)], so d(u) = |N(u)| = IN(v)] = d(v) for all vertices
u,v € V(G) such that {u,v} & E(G).
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Alternative Proof of Theorem 1.3 (Cont.)
@ Since f: N(u) — N (v) is injective, it follows that [N (u)| < [N (v)].

@ By symmetry, swapping u and v (as nonadjacent vertices) also yields
NV (v)| < |N(v)], so d(u) = |N(u)| = IN(v)] = d(v) for all vertices
u,v € V(G) such that {u,v} & E(G).

@ To complete the proof that G is regular, let © and v be nonadjacent
vertices in G. By assumption, except of one vertex, all vertices are
either nonadjacent to u or v. Hence, except of that vertex, all these
vertices must have identical degrees by what we already proved.
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Alternative Proof of Theorem 1.3 (Cont.)

@ Since f: N(u) — N (v) is injective, it follows that [N (u)| < [N (v)].

@ By symmetry, swapping u and v (as nonadjacent vertices) also yields
NV (v)| < |N(v)], so d(u) = |N(u)| = IN(v)] = d(v) for all vertices
u,v € V(G) such that {u,v} & E(G).

@ To complete the proof that G is regular, let © and v be nonadjacent
vertices in G. By assumption, except of one vertex, all vertices are
either nonadjacent to u or v. Hence, except of that vertex, all these
vertices must have identical degrees by what we already proved.

e Finally, by our further assumption (later leading to a contradiction),
since there is no vertex in G that is adjacent to all other vertices, also
the single vertex that is adjacent to w and v has a nonneighbor in G,
so it also should have an identical degree to all the degrees of the
other vertices by what is proved above.
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Alternative Proof of Theorem 1.3 (Cont.)

@ Since f: N(u) — N (v) is injective, it follows that [N (u)| < [N (v)].

@ By symmetry, swapping u and v (as nonadjacent vertices) also yields
NV (v)| < |N(v)], so d(u) = |N(u)| = IN(v)] = d(v) for all vertices
u,v € V(G) such that {u,v} & E(G).

@ To complete the proof that G is regular, let © and v be nonadjacent
vertices in G. By assumption, except of one vertex, all vertices are
either nonadjacent to u or v. Hence, except of that vertex, all these
vertices must have identical degrees by what we already proved.

e Finally, by our further assumption (later leading to a contradiction),
since there is no vertex in G that is adjacent to all other vertices, also
the single vertex that is adjacent to w and v has a nonneighbor in G,
so it also should have an identical degree to all the degrees of the
other vertices by what is proved above.

@ Consequently, G is a regular graph.
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Alternative Proof of Theorem 1.3 (Cont.)

From that point, our proof proceeds differently.
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Alternative Proof of Theorem 1.3 (Cont.)

From that point, our proof proceeds differently.

@ Let G be a k-regular graph on n vertices. By assumption, every two
vertices have exactly one common neighbor, so G is srg(n, k, 1, 1).
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Alternative Proof of Theorem 1.3 (Cont.)

From that point, our proof proceeds differently.

@ Let G be a k-regular graph on n vertices. By assumption, every two
vertices have exactly one common neighbor, so G is srg(n, k, 1, 1).

o First, if Kk =1 or kK = 2, then by assumption, it follows that G = Ky or
G = Ky, respectively, leading to a contradiction. Hence, let & > 3.
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Alternative Proof of Theorem 1.3 (Cont.)

From that point, our proof proceeds differently.
@ Let G be a k-regular graph on n vertices. By assumption, every two
vertices have exactly one common neighbor, so G is srg(n, k,1,1).
o First, if Kk =1 or kK = 2, then by assumption, it follows that G = Ky or
G = Ky, respectively, leading to a contradiction. Hence, let & > 3.
@ Every two adjacent vertices in G share a common neighbor, so G

contains a triangle. Moreover, G is C4-free since every two vertices
have exactly one common neighbor, so it is K4-free. Hence, w(G) = 3.
v
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Alternative Proof of Theorem 1.3 (Cont.)

From that point, our proof proceeds differently.

@ Let G be a k-regular graph on n vertices. By assumption, every two
vertices have exactly one common neighbor, so G is srg(n, k,1,1).

o First, if Kk =1 or kK = 2, then by assumption, it follows that G = Ky or
G = Ky, respectively, leading to a contradiction. Hence, let & > 3.

@ Every two adjacent vertices in G share a common neighbor, so G
contains a triangle. Moreover, G is C4-free since every two vertices
have exactly one common neighbor, so it is K4-free. Hence, w(G) = 3.

@ We next show that x(G) = 3. First, x(G) > w(G) = 3. We also need
to show that x(G) < 3, which means that three colors suffice to color
the vertices of G in a way that no two adjacent vertices are assigned
the same color. This can be done recursively by noticing that every
edge belongs to exactly one triangle, and a newly colored vertex
always complete a properly colored triangle, ensuring that at each
step, the coloring remains valid without requiring a fourth color.
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Alternative Proof of Theorem 1.3 (Cont.)
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Alternative Proof of Theorem 1.3 (Cont.)

o By the sandwich theorem w(G) < 9¥(G) < x(G), so ¥(G) = 3.

o By the expression for 9(G) where G is srg(n, k, 1, 1), it follows that
k

I G) =1+ ———.
(G) -
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Alternative Proof of Theorem 1.3 (Cont.)

@ By the sandwich theorem w(G) < ¥(G) < x(G), so 9¥(G) = 3.

@ By the expression for ¥(G) where G is srg(n, k, 1,1), it follows that

= k
9(G) =1+ \/ﬁ
@ This leads to a contradiction since, for all £ > 3,
(k—2)2>0,
o k2> 4(k-1),

k
S1l+——>3.
k—1
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Alternative Proof of Theorem 1.3 (Cont.)

@ By the sandwich theorem w(G) < ¥(G) < x(G), so 9¥(G) = 3.

@ By the expression for ¥(G) where G is srg(n, k, 1,1), it follows that

= k
9(G) =1+ \/ﬁ
@ This leads to a contradiction since, for all £ > 3,
(k—2)%>0,
o k2> 4(k-1),

k
<1+ ——>3.
k—1

This completes the proof of the friendship theorem (Theorem 1.3).
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Alternative Proof of Theorem 1.3 (Cont.)

@ By the sandwich theorem w(G) < ¥(G) < x(G), so 9¥(G) = 3.

@ By the expression for ¥(G) where G is srg(n, k, 1,1), it follows that

= k
HG) =1+ \/ﬁ
@ This leads to a contradiction since, for all £ > 3,
(k—2)2>0,
e k2> 4(k - 1),

k
S 1l+——>3.
k—1

This completes the proof of the friendship theorem (Theorem 1.3).

I. Sason, “On strongly regular graphs and the friendship theorem,”
submitted, February 2025. https://arxiv.org/abs/2502.13596

— Sl
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A Second Alternative Proof of Theorem 1.3

From the point where we get, by contradiction, that G is srg(n, k, 1, 1), it
is possible to get a contradiction in the following alternative way.

Proposition 1.1 (Feasible Parameters of Strongly Regular Graphs)

Let G be a strongly regular graph with parameters srg(n,d, A\, ). Then,
Q@ n—d-—1p=dd-X-1).
2d+(n—1)(A—p)
= (A=p)?2+4(d—p)
Q 6|(ndX).

is an integer whose absolute value is less than n — 1.

LN
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A Second Alternative Proof of Theorem 1.3

From the point where we get, by contradiction, that G is srg(n, k,1,1), it
is possible to get a contradiction in the following alternative way.

Proposition 1.1 (Feasible Parameters of Strongly Regular Graphs)

Let G be a strongly regular graph with parameters srg(n, d, A, ). Then,
Q@ n—d-1pu=d(d—-X-1).
2d+(n—1)(A—p)
© (A=p)%+4(d—p)
@ 6|(nd).

is an integer whose absolute value is less than n — 1.

@ Condition 1 is a combinatorial equality for strongly regular graphs.

@ Condition 2 holds by the integrality of the multiplicities of the
second-largest and least eigenvalues of the adjacency matrix.

@ Condition 3 holds by the number of triangles in the graph G.

™ = = = ot

|. Sason, Technion, Israel ITA 2025, San Diego 18/33



A Second Alternative Proof of Theorem 1.3 (Cont.)

@ By Item 1 in Proposition 1.1 with d =k and A = 4 = 1, we get
n = k% — k + 1. This does not lead to a contradiction since summing
over all the degrees of the neighbors of an arbitrary vertex u gives k2.
Then, by the assumption of the theorem that every two vertices have
exactly one common neighbor, it follows that the above summation
counts every vertex in G exactly one time, except of u that is counted
k times. Hence, indeed n = k? — k + 1.
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A Second Alternative Proof of Theorem 1.3 (Cont.)

@ By Item 1 in Proposition 1.1 with d =k and A = 4 = 1, we get
n = k% — k + 1. This does not lead to a contradiction since summing
over all the degrees of the neighbors of an arbitrary vertex u gives k2.
Then, by the assumption of the theorem that every two vertices have
exactly one common neighbor, it follows that the above summation
counts every vertex in G exactly one time, except of u that is counted
k times. Hence, indeed n = k? — k + 1.

@ By Item 2 in Proposition 1.1 with d = k£ and A = p = 1, we get that
\/’le € N. Consequently, (k — 1)|k? € N. Since
k* = (k—1)(k+1) +1, it follows that (k —1)|1, so k = 2. If k = 2,
the only graph that satisfies the condition of Theorem 1.3 is G = Ko,
which also satisfies the assertion of the theorem. Hence, this
argument contradicts the assumption in the proof since it led to the

conclusion that G is srg(n, k,1,1).
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The sandwich theorem for the Lovész ¥-function applied to strongly
regular graphs gives the following result.
Corollary 1.4 (Bounds on Parameters of SRGs)
Let G be a strongly regular graph with parameters srg(n, d, A, u). Then,
n(t+p—A)
GO<|————= 1.12
a )_{2d+t+u—>\ (1.12)
2d
G) <1 —_— 1.13
w(©) <1+ | . (113)
2d
G)>1 _ 1.14
X2 1+ || (114)
— n(t+p—2A)
G)>|———— 1.15
x( )_[2d+t+u—)\ ’ (1.15)
with .
t2 /(= N2+ 4(d — p). (1.16)
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Examples: Bounds on Parameters of SRGs

Figure 3: The Petersen graph is srg(10,3,0,1) (left), and the Shrikhande graph is
srg(16,6,2,2) (right). Their chromatic numbers are 3 and 4, respectively.
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Schlafli Graph

. ,,Q %

L A K
beeg;z;,,%ta‘n.:,.‘ >
% A

Figure 4: Schlafli graph is srg(27,16, 10, 8) with chromatic number x(G) = 9.
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Examples: Bounds on Parameters of SRGs (Cont.)

@ Let Gy be the Petersen graph. Then, the bounds on the
independence, clique, and chromatic numbers of G are tight:

Oé(Gl) = 4, w(Gl) = 2, X(Gl) = 3 (1.17)

@ The bounds on the chromatic numbers of the Schlafli graph (G2),
Shrikhande graph (Gs) and Hall-Janko graph (Gy) are tight:

X(G2) =9, x(G3) =4, x(Gyq)=10. (1.18)

@ For the Shrikhande graph (Gs),
» the bound on its independence number is also tight: «(Gs) = 4,
» its upper bound on its clique number is, however, not tight (it is
equal to 4, and w(G3) = 3).
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Strong Product of Graphs

Let G and H be two graphs. The strong product G X H is a graph with
o vertex set: V(GK H) = V(G) x V(H),

@ two distinct vertices (g, h) and (¢',h’) in GX H are adjacent if the
following two conditions hold:

@ g=g or{g,g'} €E@G),
@ h="hnor{hh'} € E(H).
Strong products are commutative and associative.
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Strong Product of Graphs

Let G and H be two graphs. The strong product G X H is a graph with
@ vertex set: V(GXH) = V(G) x V(H),

@ two distinct vertices (g, h) and (¢, h’') in GIX H are adjacent if the
following two conditions hold:

@ g=gor{g, g} €EG),
@ h="hnor{hh'} € E(H).

Strong products are commutative and associative.

Strong Powers of Graphs

Let

G**4 GX...KG, keN (1.19)

G appears k times

denote the k-fold strong power of a graph G.
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Shannon Capacity of a Graph (1956)

@ The capacity of a graph G was introduced by Claude E. Shannon
(1956) to represent the maximum information rate that can be
obtained with zero-error communication.

|. Sason, Technion, Israel ITA 2025, San Diego 25/33



Shannon Capacity of a Graph (1956)

@ The capacity of a graph G was introduced by Claude E. Shannon
(1956) to represent the maximum information rate that can be
obtained with zero-error communication.

@ A channel is represented by a confusion graph G, where the vertices
of G represent the input symbols and two vertices are adjacent if the
corresponding pair of input symbols can be confused by the channel
decoder). The Shannon capacity of a graph G is given by

O(G) = sup{/ a(GX*)

keN

= lim {/a(GX*). (2.1)

k—o0
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Shannon Capacity of a Graph (1956)

The capacity of a graph G was introduced by Claude E. Shannon
(1956) to represent the maximum information rate that can be
obtained with zero-error communication.

A channel is represented by a confusion graph G, where the vertices
of G represent the input symbols and two vertices are adjacent if the
corresponding pair of input symbols can be confused by the channel
decoder). The Shannon capacity of a graph G is given by

O(G) = sup{/ a(GEk)

keN

= klilglo\k/a(ng). (2.1)

The last equality holds by Fekete's Lemma since the sequence
{log a(GEF)}%°  is super-additive, i.e.,

a(GEF1tk2)y > o (GRFL) o(GRF2), (2.2)

o = = SRS
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On the Computability of the Shannon Capacity of Graphs

@ The Shannon capacity of a graph can be rarely computed exactly. ©

@ However, the Lovész 9-function of a graph is a computable (and
sometimes tight) upper bound on the Shannon capacity. ©

.

Lovasz Bound on the Shannon Capacity of Graphs (1979)

Theorem: For every finite, simple and undirected graph G,

0(G) < ¥(G). (2.3)

— v
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Capacity of Graphs

Proposition: Let G be a finite, undirected, and simple graph. If
a(G¥) = 9(G)! for some ¢ € N, then

O(G) =¥(G), VkeN. (2.4)
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Capacity of Graphs

Proposition: Let G be a finite, undirected, and simple graph. If
a(G¥) = 9(G)! for some ¢ € N, then

0(G) =9(G), VkeN. (2.4)

v

Corollary 1: If a(G) = 9¥(G), then for all k € N, the k-fold strong power of
G satisfies

a(G)F = a(G®F) = O(G®*) = 9(G®*) = 9¥(G)k, VkeN.  (25)

v,
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Capacity of Graphs

Proposition: Let G be a finite, undirected, and simple graph. If
a(G¥) = 9(G)* for some £ € N, then

0(G) = 9(G), VkeN. (2.4)

v

Corollary 1: If a(G) = 9¥(G), then for all k € N, the k-fold strong power of
G satisfies

a(G)F = a(G®F) = O(G®*) = 9(G®*) = 9¥(G)k, VkeN.  (25)

By Corollary 1 and our closed expression for the Lovasz 9J-function of
strongly regular graphs, the Shannon capacity of some strongly regular
graphs can be determined.
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Shannon Capacities of Some Strongly Regular Graphs

Q@
Q@
(6)

© e

6 ©6 6 €6

The Hall-Janko graph G is srg(100, 36, 14,12), and ©(G) = 10.
The Hoffman-Singleton graph G is srg(50,7,0,1), and ©(G) = 15.
The Janko-Kharaghani graphs of orders 936 and 1800 are
srg(936, 375, 150, 150) and srg(1800, 1029, 588, 588), respectively.
The capacity of both graphs is 36.

Janko-Kharaghani-Tonchev: G = srg(324,153,72,72),0(G) =

The graphs introduced by Makhnev are G = srg(64, 18, 2 6)

G = srg(64,45,32,30). Capacities: ©(G) = 16, and @(G)

The Mathon-Rosa graph G is srg(280, 117,44, 52), and @(G) = 28.

The Schiafli graph G is srg(27, 16, 10,8), and ©(G) =

The Shrikhande graph is srg(16, 6,2, 2); its capacity is O(G) = 4.
The Sims-Gewirtz graph G is srg(56, 10,0, 2), and ©(G) = 16.
The graph G by Tonchev is srg(220, 84, 38, 28), and ©(G) = 10.
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In some cases, the Shannon capacity of a graph can be calculated exactly,
and the Lovdasz 9J-function is a tight bound. ©

Theorem 2.1 (Self-complementary vertex-transitive graphs, Lovasz 79)

Let G be an undirected and simple graph on n vertices.

@ If G is a vertex-transitive graph on n vertices, then
a(GRG) =O(GXG) =9(GXG) = n. (2.6)

@ If G is a self-complementary and vertex-transitive graph on n vertices,
then

0(G) = vn = 9(G). (2.7)
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Theorem 2.2 (Strengthened and Refined Ver. of Thm. 2.1 (1.S., '24))

Let G be an undirected and simple graph on n vertices.

@ If G is a vertex-transitive or strongly regular graph, then
a(GRG) =O(GXG) =9(GXG) = n. (2.8)

@ If G is a conference graph, then 9(G) = /n.

© If G is a self-complementary graph with «(G) = k, then
k-1

Vn < O(G) < 16n . (2.9)
Q If G is a self-complementary graph that is vertex-transitive or strongly
regular, then
6(G) = v = 9(G), (2.10)

Va(GHG) = 6(G). (2.11)

Hence, the minimum Shannon capacity among all self-complementary
graphs of a fixed order n is achieved by those that are vertex-transitive or
strongly regular, and this minimum is equal to \/n.

il = —_ = = o}
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Summary (I.S., '23)

@ Upper and lower bounds on the Lovasz-# function of regular graphs.

@ These spectral bound depend on the second-largest and smallest
eigenvalues of the adjacency matrix.

The upper bound is due to Lovasz, followed by a new sufficient
condition for its tightness, and the lower bound is new.

These bounds are tight <= the graph is strongly regular (SRG).
Useful in bounding graph invariants, including the Shannon capacity.
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Summary (I.S., '24)

Our follow-up published work (AIMS-Mathematics, 2024) delves into three
research directions, leveraging the Lovasz ¥-function of graphs.

@ It provides new results on the Shannon capacity of graphs, including
the determination of that capacity for two infinite subclasses of SRGs.

@ For every even integer n > 14, it is constructively proven that there
exist connected, irregular, cospectral, and nonisomorphic graphs on n
vertices such that the following holds:

» Cospectrality with respect to the adjacency, Laplacian, signless
Laplacian, and normalized Laplacian matrices,
» They share identical independence, clique, and chromatic numbers,
» Their Lovasz ¥-functions are distinct.
@ A query regarding the variant of the ¥-function by Schrijver and the
identical function by McEliece et al. (1978) is resolved.

@ It is shown, by a counterexample, that the ¥-function variant by
Schrijver does not possess the property of the Lovdsz ¥-function of
forming an upper bound on the Shannon capacity of a graph.

™ = = SR
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Recent Journal Papers

This talk presents in part the following recent journal papers:

@ |. Sason, “Observations on the Lovdsz ¥-function, graph capacity,
eigenvalues, and strong products,” Entropy, vol. 25, no. 1, paper 104,
pp. 1-40, January 2023. https://doi.org/10.3390/e25010104

@ |. Sason, “Observations on graph invariants with the Lovasz
J-function,” AIMS Mathematics, vol. 9, pp. 15385-15468, April 2024.
https://www.aimspress.com/article/doi/10.3934/math.2024747

© |. Sason, “On strongly regular graphs and the friendship theorem,”
submitted, February 2025. https://arxiv.org/abs/2502.13596
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